Neuromuscular Plasticity: Disentangling Stable and Variable Motor Maps in the Human Sensorimotor Cortex

نویسندگان

  • Dominic Kraus
  • Alireza Gharabaghi
چکیده

Motor maps acquired with transcranial magnetic stimulation (TMS) are evolving as a biomarker for monitoring disease progression or the effects of therapeutic interventions. High test-retest reliability of this technique for long observation periods is therefore required to differentiate daily or weekly fluctuations from stable plastic reorganization of corticospinal connectivity. In this study, a novel projection, interpolation, and coregistration technique, which considers the individual gyral anatomy, was applied in healthy subjects for biweekly acquired TMS motor maps over a period of twelve weeks. The intraclass correlation coefficient revealed long-term reliability of motor maps with relevant interhemispheric differences. The sensorimotor cortex and nonprimary motor areas of the dominant hemisphere showed more extended and more stable corticospinal connectivity. Long-term correlations of the MEP amplitudes at each stimulation site revealed mosaic-like clusters of consistent corticospinal excitability. The resting motor threshold, centre of gravity, and mean MEPs across all TMS sites, as highly reliable cortical map parameters, could be disentangled from more variable parameters such as MEP area and volume. Cortical TMS motor maps provide high test-retest reliability for long-term monitoring when analyzed with refined techniques. They may guide restorative interventions which target dormant corticospinal connectivity for neurorehabilitation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hypoactivity Affects IGF-1 Level and PI3K/AKT Signaling Pathway in Cerebral Structures Implied in Motor Control

A chronic reduction in neuromuscular activity through prolonged body immobilization in human alters motor task performance through a combination of peripheral and central factors. Studies performed in a rat model of sensorimotor restriction have shown functional and biochemical changes in sensorimotor cortex. However, the underlying mechanisms are still unclear. Interest was turned towards a po...

متن کامل

Impact of hypokinesia on dynamics of formation of evoked potentials in sensorimotor cortex in early postnatal ontogenesis

The analysis of evoked potentials of sensorimotor cortex in response to electrical stimulation of n. ischiadicus shows that the extremal factor hypokinesia has a negative impact on the dynamics of formation of amplitudal and temporal characteristics since eyes openning in 2-weeks old rats. The most vulnerable process to the impact of hypokinesia is the first-positive phase, which disappears in ...

متن کامل

Impact of hypokinesia on dynamics of formation of evoked potentials in sensorimotor cortex in early postnatal ontogenesis

The analysis of evoked potentials of sensorimotor cortex in response to electrical stimulation of n. ischiadicus shows that the extremal factor hypokinesia has a negative impact on the dynamics of formation of amplitudal and temporal characteristics since eyes openning in 2-weeks old rats. The most vulnerable process to the impact of hypokinesia is the first-positive phase, which disappears in ...

متن کامل

Body Topography Parcellates Human Sensory and Motor Cortex.

The cytoarchitectonic map as proposed by Brodmann currently dominates models of human sensorimotor cortical structure, function, and plasticity. According to this model, primary motor cortex, area 4, and primary somatosensory cortex, area 3b, are homogenous areas, with the major division lying between the two. Accumulating empirical and theoretical evidence, however, has begun to question the v...

متن کامل

Effects of Increasing Neuromuscular Electrical Stimulation Current Intensity on Cortical Sensorimotor Network Activation: A Time Domain fNIRS Study

Neuroimaging studies have shown neuromuscular electrical stimulation (NMES)-evoked movements activate regions of the cortical sensorimotor network, including the primary sensorimotor cortex (SMC), premotor cortex (PMC), supplementary motor area (SMA), and secondary somatosensory area (S2), as well as regions of the prefrontal cortex (PFC) known to be involved in pain processing. The aim of this...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 2016  شماره 

صفحات  -

تاریخ انتشار 2016